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Abstract-Magnetostatic Wave (MSW) propagation in a finite-

width ferrite slab placed inside and along a rectangular wave-
guide is investigated theoretically and numerically. Using the
integral equation method, the general solution to the problem

of wave propagation has been derived for the first time here in
this paper. Thin-slab approximation made the derived solution
more tractable and provided the dispersion relations in terms

of an infinite determinant. From the presented results, it can be
concluded that in order to obtain high value of group titne delay
over a large bandwidth thin, narrow slabs placed in the center

of the guide must be used. On the other hand, to maximize the

device bandwidth, thin slabs placed at the top or bottom of the

guide are most appropriate.

I. INTRODUCTION

A NALYSIS of magnetostatic wave (MS W) propagation

in a ferrite material in a normally magnetized stntcture

bound by metal surfaces has been extensively reported in lit-

erature [ 1]–[5]. MS W propagation in a ferrite slab completely

filling a waveguide has also been analyzed and documented

[6]. Recently the analysis of magnetostatic waves in a YIG-

loaded waveguide was reported [7], [8]. The mathemati-

cal analysis carried out by these recent investigations were

based on a parallel magnetic bias field which led to the

propagation of magnetostatic surface waves (MSSW). These

waves are highly nonreciprocal with respect to the direction

of propagation and unsymmetrical with respect to the slab

position in the waveguide. Koshiba et al. [9], [10] provided

a unified numerical approach based on the finite-element

method where both cases of parallel and normal magnetization

were studied. However the problem of magnetostatic wave

propagation in a YIG slab enclosed in a waveguide with

normal magnetic bias field (Magnetostatic Forward Volume

Waves, MSFVW) has not been approached using the integral

equation method (see Fig. 1). A brief account of this method

was presented in the 1988 IEEE-MTT’s Digest [11]. In this

Digest article, the problem of MSW propagation in a normally

magnetized YIG-loaded waveguide was sketchily outlined and
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Fig. 1. Device configuration for ~dc normal to the YIG slab,

yet no attempt to solve the problem or provide supporting

formulation or reasonings was tuidettaken and thus a very

scanty and ambiguous view of the resolution of the problem

was presented. The present work, however, attempts to clear

the way and present a highly coherent and understandable view

of the MS W propagation and all of its inherent complexities.

In this paper, the analysis of magnetostatic waves in a

waveguide structure with the normal magnetic field as shown

in Fig. 1 is carried out in detail. For this configuration, when

the gap length (z. ) is zero, the problem can be treated as a

boundary value problem and conventional mode analysis tech-

nique can be employed effectively to solve for the dispersion

characteristics for the different modes of propagation [12].

However, when X. is nonzero, the mode analysis techniques

appear to be fruitless and the integral equation method seems

to be one of the most effective methodl in this case and provides

the desired dispersion relations.

Section II briefly describes the underlying Magnetostatic

EM Fields. The integral equation method and the general

solution for the scalar magnetic potential fuiiction in terms of

an integrodifferential equation is presented in Section 11[. In

Section IV, using thin slab approximation an approximate so-

lution is obtained. Numerical analysis and results of computer

simulation for the first-order mode are presented in Section V.

Summary and conclusions along with some final discussions

follow in Section VI.

II. MAGNETOSTAmC EM FIELDS

In this Section, the mathematical foundation for magne-

tostatic wave propagation in unbounded and bouttded ferrite

media is introduced and the governing equations are derived.

Magnetostatic waves have wavelengths much greater than the
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lattice spacing, therefore it is appropriate to use classical theory

rather than quantum theory, thus the small signal theory of a

lossless ferrite is based on the Maxwell’s equations.

The tensor permeability of a ferrite is derived using New-

ton’s equation of motion where the exchange and core losses

are neglected. Utilizing this permeability tensor, the wave

propagation in unbounded ferrites leads to three regions of in-

terest in the frequency-wave number (w-k) plane. It is seen that

magnetostatic wave propagation is possible only in a limited

range of wavelengths [13]. In this range of wavelengths, the

electric field is negligibly small compared with the magnetic

field and can be neglected. Thus Maxwell’s equations can be

simplified and the magnetic field can be derived directly from

a scalar potential function. When this approximation is used

the governing partial differential equations inside

outside the YIG slab can be derived as follows:

Vxk=o+k=vv(x,y, z)
V.$=o
v. [~. Vv(z,y,z)] = o.

as well as

(1)

(2)

Where ~ is the permeability tensor, ~ is the small signal

magnetic field intensity and U (s, y, z) is the scalar magnetic

potential function. It should be noted that in the air region

outside the YIG slab, (2) is valid except for ~ which should

be replaced by scalar PO, the permeability of free space.

Utilizing these equations, Wave Propagation in a YIG

loaded rectangular waveguide under the magnetostatic ap-

proximation can now be approached and a set of boundary

conditions which must be satisfied at the metal surfaces can

be derived. It is further assumed that the transverse dimensions

of the waveguide are small compared to the electromagnetic

wavelengths and thus the waveguide’s electromagnetic modes

are either cut-off or leaky waves.

III. THE INTEGRAL EQUATION METHOD

The analysis of the magnetostatic wave propagation in a

finite-width YIG slab appears to be feasible by the utilization

of the integral equation method. To be able to use this method

effectively, it is best to deduce the integral equation in the

steps as outlined in the following. The time dependence is of

the form e@, (w being the angular frequency) and is omitted

in all of the following expressions, The integral equation is

developed in the following systematic way:

1.

2.

the magnetostatic wave propagation is assumed to be in
the y-direction and thus of the form e–~h”y where K is

the wave number. In this manner, the y-variation of all

functions involved in this study is of the form e–~KY;

which can be omitted since it is a common factor in all

of the subsequent formulations.

An unknown scalar magnetic potential function inside

the ferrite slab is assumed. The potential function for all

the points inside the slab is denoted by V (z, y, z). Based

on T (s, y, z), fictitious magnetic sources can be ob-

tained. The scalar magnetic potential function V (z, y, z)

inside the YIG region can be written as:

V(Z, y, z) = 0($, z)e-~Ky. (3)

3.

4.

Then, except for the common factor e–j~y, the small

signal magnetic field intensity, the magnetic flux density,

and the magnetization intensity vectors in the YIG region

designated by ~, ~ and ?7i respectively are given by

~ = Vq$ – jK$y (4)

6=#o[z.].7i (5)

m= ([G,] - ~]) x (6)

where j is a unit vector in the y-direction; [~] is the

identity tensor and [Z.] is the relative permeability tensor

[12].

From the small signal magnetization intensity (777)given

by (6), the magnetic sources can be determined. The

total magnetic charge density consists of two portions:

a) the magnetic volume charge density (pa) and b) the

magnetic surface charge density (p, ). These magnetic

sources can be expressed as

pv = _v . (~e–~~Y) (7)

pm=m. n (8)

where ii is a unit vector normal to the slab surface.

Substituting (6) in (7) and (8) and upon further sim-

plifications, PU and PS are finally given by

p.($, ~) =
~–l
—@zz(z, z) (9)

P

Ps(zo, z) = –(L – l) Q’Z(%O,Z) – KIK@(zb, z)

(lOa)

p,(a–z0,2) = (y– l)@z(a– x0,2)

+ KIK@(a – Zo, z) (lOb)

where L and KI are the diagonal and off-diagonal

elements of the permeability tensor, respectively [12], and

OZ. is the second-order derivative of @ with respect to

z and @z is the first-order derivative with respect to z.

From (10), it can be seen that unlike parallel magne-

tization case [8], the surface charges at .z = Z1 or Z2

are absent and the only existing surface charges are at
~ = co and% = a—~.. It will be seen that this difference

in the charge arrangement and mathematical form for the

two cases will lead to different formulations entirely.

The Green’s function G(~, z)e–~~v, for a magnetic line

source located at (x’, z’) along and inside a waveguide,

is given by

cc

G(z, z’, z, .z’) = ~An cos(nm’/a) cos(n7rz/a)

n=o

. cosh~~(b – z’) Cosh T~.z(lla)

for z < z’. and by:

m

G(z, z’, z, z’) = ~An cos(nd/a) cos(nmr/a)

7L=II

. Cosh ~~(b – z) Cosh~~z’ (1 lb)
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for .2 > 2?; where

An =
–2

%a(l + &J sinh~:b

‘L = [~2+ (7t7T/a)2]1/2

and d.m is the Kronecker delta function.

5. At this point in the development of the formulation, an

important distinction for the magnetic potential inside the

waveguide and inside the ferrite slab is made as follows:

a. @t (z, z) is the scalar magnetic potential function

inside the waveguide (including the ferrite slab)

andisdefined for O~x~a and O<.z <b.

b. O(Z, z) is a scalar magnetic potential function

inside the ferrite slab and is defined for ZO ~ x <

a—xOandz1~,z~z2.

With this convention, the developed formulations which

will appear later in this work can easily be assimilated.

6. Considering a uniform waveguide cross section and

wave propagation in one unit length, and by means of the

magnetic sources (9), (10) and the suitable Green’s func-

tion (1 1), an integral expression for the potential function

@t (z, z) everywhere inside the waveguide (including the

ferrite) can be written as:

@t(x, z) =
/

Pv(x’, z’)G(x, X’, .2,.Z’)dX’d~’

YIG area

+
/

~lG~ide, Ps(z’z’)G(x, z’, z, z’)dz’ (12)

Using (9), (10), and (11) and considering only the points

located inside the ferrite slab, from (12) an integro-

differential equation in terms of O(Z, z) is obtained:

@(x, Z)

~o ~1

—
][
,:2(P - l)~z(m, ~’)+ K, K@(xrJ, z’)]

.G(x> X(),z, i)dz’

+
/[

~: (P - l)@.(a - ~c), ~’)+ K,K@(a - Z(), z’)]
.G(x, a – Zo,.z,.z’)d.z’. (13)

Equation (13) represents the most general formulation

to the problem of MS W propagation in a normally

magnetized waveguide structure.

The integral expression given by (13) is two dimensional

and very difficult to analyze. Assuming the slab to be very

thin makes this equation one dimensional and tractable. With

this assumption and utilizing an effective numerical technique

combined with an exact simulation algorithm (see Appendix

A), the final resolution of the problem can successfully be

obtained.

IV. APPROXIMATE SOLUTION

As noted in (13), the first term involves a second-order

partial derivative term (Qzz ) which must be evaluated prop-

erly. To be able to obtain @z., the thin slab is subdivided

into two layers of equal thickness, i.e., Z1 ~ z ~ ZO and

Z. ~ z ~ .22 (Fig. 1). The variation of O(Z, z) in each layer

in the z-direction is assumed to be linear. In this manner three

functions, each having one variable, are used to approximate

Q(z, z) in the slab as follows:

fl($)= qvl),

fo(~) = q%~o),

f2(x) = @($, z2).

The linear approximation gives:

@z(x, ,Z) = f’(x)- fo(x) ZO < ,z < .Z2, (14b)
.z’-zo ‘

and

where d = ,ZO– .ZI = .22– Z. = t/2 and t is the slab thickness.

In the integral equation (13), the second and third terms

are surface integrals over the sides of the slab at z = Z. and

a – X.. In the thin-slab assumption, instead of a continuous

distribution of surface charge in z, the charge distribution

on both sides of the slab (x. and a – X.) in each region

.Z1 < z ~ Z. and Z. ~ z ~ Z2 is assumed to be uniform.

This uniform charge distribution assumption connotes that the

surface charge in each region is equal to the mean of its values

at the edges of that region.

The main reason for uniform charge distribution at the

slab sides (z = zo and a – XO) is the fact that O(X, z) is

evaluated only at three values of z, i.e., z = Z1, zo, and 22.

The function O(Z, z) between these values is unknown and so

all the equations should involve calculations of O(X, z) strictly

at these three values of z. The continuous charge distribution

would not be a plausible assumption under these conditions.

Substituting for G($, z’, z, z’) in (13), carrying out the z-

integrals and evaluating the potential function @(z, z) at z =

Z1, Z., and 22 would yield a set of three coupled equations in

terms of jl (%), fO (z) and jz (x). By introducing the following

functions

G.(z) = ~z(z) – 2.fo(z) + jl(z) (16)

G,(x) = j2(z) + 2jo($) + jl(x). (17)

This set of three coupled equations can be reduced to a set of

two coupled equations which is more attractive to work with

w 2WnQn
Gv($) = – ~~o a(l + ~011) cos n7rx/a (18a)

m 2UnQn
G.(x) = – ~~o .(1 + I&) cos n7rz/a (18b)
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(. p–l KIK dG3(a – ~o)
---&(i – Zo) + ~

)dx ‘
(21)

The term Q“ in (21) involves the first-order derivative of

G.(z). The function G.(z) is defined to be nonzero in the YIG

and zero everywhere outside, which means it is discontinuous

at x = X. and x = a – X. and thus its derivatives in the x-

direction at the slab edges are undefined. This problem creates

difficulty in the evaluation of Qn. To overcome this problem of

discontinuity, the function Gs (x) is defined only in the range

X. ~ x ~ a – X.. In this manner, the function G.(x) becomes

differentiable at z = xo and a – XO and its approximate finite

series expansion can be written as follows:

NO

G,(z) = P() + ~ ~,L COS *(Z - q))

L=l

No

+ ~ n sin *(X - Xo)

L=l

xo<x<a —xo, (22)

where pL’s and qL’s are arbitrary constants and No is a very

large integer number. Upon differentiation of G.(z) and use

of the series expansion for G.(x) and dG~ /dx, the expression
for Q“ becomes:

-Cos:xoklpo+sp’)

KKI “ Lz
— E —’JL+ 4 ~=1 a — 2xo 1

[(
No

p–l
+cos~(a–zo) ~ Po + ~(–l)LPL

L=l )

1++s(-l)L-#&qL~ (23)

L=l

Utilizing (23) and further mathematical manipulation, (18)

yields the following set of linearly independent equations:

CT+ ~CYnmQnWn = 0> (24a)

n=o

c?+ ~ CYWmQ”Un = 0, (24b)
n=o
m

S?+ ~ t3nnQnUn = O, (24c)
n=()

where

~~=~~-ZOcos(~x)Gv,x)dx,

Cffi=~~’Ocos(~x)GU,x,dx

S~=~~xOsin(~x)GU(x)dx

fJ— 2 ~a-’”cos(~x)cos(:x)dx
‘n — a(l + &n) ~0

Pmn = a(l:don)~a-zosin(:x) cos(:x)dx,

nz=0,1,2, ~.. ,No and n=0,1,2, . . .. No.

The term Qn in (23) is expressed in terms of constant

coefficients PL and ~L (L = 1, . . . . No); however, through a

certain procedure it is possible to express them in terms of two

of the variables of (24) which are C8m and S~mas follows:

Po

PI

PN.
m

qNo

= [H]-l

c:
c:

c)”
s:

S@

(25)

where [H] – 1 is the inverse of a known matrix [H], (see

Appendix B).

Substitution of PL’s and q”s as given by (25) for Qn in

(24) will produce a system of linear equations in CT, C:,

and S~m. To obtain a nontrivial solution for this solution for

this system of linear equations, it is required that the large

determinant (NO x NO) of the coefficient matrix to be set

to zero. However, for practical purposes the matrix should

be properly truncated for best accuracy. The truncation cut-

off point of the matrix depends on the mode of propagation.
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For example, for the first- and second-order modes minimum

matrix sizes were found to be 4 x 4 and 6 x 6 respectively.

For higher order modes, larger matrices must be considered.

In the next section (24) is discussed in detail for the first-

order mode (m = 1) and a simulation algorithm and a

computer program based on a truncated matrix is developed

to provide numerical insight into the problem.

V. NUMERICAL ANALYSIS AND

COMPUTER SIMULATION RESULTS

In Section IV, the basic formulation for magnetostatic wave

propagation for a normal magnetic bias field was derived and

was given by (24). In this section a special case i.e., that of

the first-order mode is finther analyzed and sample numerical

solutions are obtained.

For the first-order mode (m = 0,1 and n = O, 1) (24)

is used to derive the dispersion relations. Through further

mathematical work for this mode, (24) when cast into a concise

matrix notation, becomes

c:

II[M(f,lq] ~ q =0, (26)

c:

s:

where [lW(~, k)] is shown at the bottom of this page, and

where

~=P–l

pd2 ‘

DO =

DI =

(

K2K1T

)
Cos ~xo-Q5%2 + 42) - 4(a _ J:2 ~

( K2K1r
+ Q5%2 - M2) - ~(a _ ~x.)hh

)

Cos :(a – Ql),

(+ (A-1) / K2K1X

)
~(hl, - h;,) - ~(a _ ~zo) hj, cos ;(u - ~o),

zo= VARIABLE

a=20cm
%:m+t t :,,

b: fOcm
a

65 -
t: Ofcm

Hdc = 1800 Oe

N MO = 1750 Oe

5

~’60 -

Z&
~
w
~

55 -

5 oo,~.
8 10 12

K, cm-f

Fig. 2. Dispersion curves for different slab positions.

It is to be noted that [H] is a known matrix (see Appendix

B) which was calculated and wherefrom its corresponding

inverted matrix was worked out with the aid of a computer,

so that the results of this inversion could be used in (26).

Requiring a nontrivial unique solution yields the dispersion

relation. This dispersion relation is obtained by setting the

determinant of [&f(j, K)] to zero. To find the dispersion

relation for the first-order mode, the following equation must

be solved:

lLf(~, K)l = (). [27)

With the aid of a proper simulation algorithm, and by employ-

ing the Newton–Raphson method the determinant roots of the

dispersion relations were found through several iterations (see

Appendix A)

Fig. 2 shows the effect of slab position in the waveguide on

the dispersion characteristics. From this figure it cart be seen

that the effect of slab position on the dispersion curve becomes

pronounced at the higher frequencies in the propagation band.

Although the characteristics all converge at the lower end of

the propagation band, their slopes are different. This leads to

different group time delays as can be seen in Fig. 3. This figure

shows the group time delay corresponding to Fig. 2. It can be

observed that as the slab is placed toward the center of the

guide, the group time delay increases while the propagation

bandwidth decreases.

Width effects on the device performance was also studied

and the results are shown in Figs. 4 and 5. In Fig. 4, it calmbe

[Nl(j,K)] =

1 + Faol)wo FaolWl D@l)lwl DlaolWl D2a01Wl

FaloWO 1 + FallW1 Doallwl D1allWl D2a11W1

FaooUO FClolul 1 + Doaolul D1aolUl D2U01U1

FaloUO FallUl Doall Ul 1 + D1all Ul D2allU~

F~loUO F,bllU1 Do/311U1 D1~llUl 1 + D2/311U~1
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Fig. 3. Time delay versus frequency for different slab positions.

seen that as the normalized air gap increases the propagation

bandwidth decreases and the curves flatten out as they shift

toward higher frequencies. Fig. 5 shows the corresponding

group time delay versus frequency. From this figure it can be

seen that as the slab width decreases (or the air gap increases)

the group time delay increases toward higher values with

smaller bandwidths as noted earlier. The group time delay at

smaller slab widths remains constant in a larger bandwidth and

also has a higher value. This property can be used effectively

in device design to obtain a constant, high group delay per unit

length in a desired frequency band. Fig. 6 plots wave number

K versus the normalized air gap (2zo/a). In this figure, the

information of Fig. 4 is rearranged in a different fashion. It

can be seen that the wave propagation at small slab widths

(or large air gaps) is possible only at higher frequencies with

smaller wavelengths (or higher K). Once the slab width is

chosen, Fig. 6 shows the frequency at which the device must

be operated to obtain a certain wavelength, and vice versa.

As can be observed from these results, the effect of finite

sample width is significant in the low-wave number region

which is in good agreement with earlier works [9], [10], and

[14].

VI. SUMMARY AND CONCLUSION

Magnetostatic wave propagation in a normally magnetized

waveguide structure was analyzed and the general solution

to the problem with the use of the integral equation method

was derived. Thin-slab approximation led to a set of linearly

independent equations which provided the dispersion relations

in terms of an infinite determinant. Using proper truncation

procedures several important effects were studied. The depen-

dence of the dispersion relations and group time delay per

unit length on the position and width of the YIG slab and

sample numerical solutions for the first-order mode for several

6

5

5 –

lo

0 –

/

*V
Xo= VARIABLE,0

●o 2.= 0,95cm or 0,05cm
% a = 2.0 cm

b=i.Ocm
t= O.fcm
Hdc= !800 Oe
M. = 1750 Oe

1

K, cm-l

Fig. 4. Dispersion curves for different slab widths.

Zo

o a
~Q,vARIABLE

2.= 95 cm
a=20cm
b=10 cm I
t= Olcm

‘dc = 1800 Oe
I

MO= 1750 Oe

I

I
1!

1,
I

!11
I

I 1~ I

55 60 65 70 75

FREQUENCY, GHZ

Time delay versus frequency for different slab widths.

o

configurations over a frequency range of 5.0-7.0 GHz were

discussed and the results were presented.

It was also observed that the propagating waves, unlike

parallel magnetization case, are reciprocal with respect to the

direction of propagation and symmetrical with respect to the

slab position in the waveguide.
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2xo/a

Wave number (k) versus normalized air gap for different frequencies.

From these observations, it can be concluded that to obtain

high values of group time delay over a large bandwidth, very

thin slabs are required. To increase the time delay even more,

it is best to choose a narrow width slab and place it in the

center of the waveguide.

APPENDIX A

ALGORITHM FOR DISPERSION CHARACTERISTICS

The equation to be solved numerically is the dispersion

relation, a function of frequency (~) and wave number (k),

which can be written as

D(f, K) = o (Al)

where D ( f, K) represents the determinant of the coefficient

matrix involved in the system of linear equations ( 1~(~, K) I).

Equation (Al), in general, is a nonlinear function of j and K

and can be quite complicated if the size of the matrix is large.

With the aid of the Newton–Raphson method, (Al) is solved

numerically for roots K (at a known frequency .fl ). The fol-

lowing algorithm details the exact steps used in programming

(Al) in order to find its roots:

Step 1. Input and Definition: Read ~1 = the frequency of

operation, K1 = the initial approximation of the root of

D(fl, K) = O

~ = the convergence term and N = the maximum number

of iterations.

Step 2. Initialization Set iteration counter i = 1. Set the

correction term

Al = c1

(C1 is an arbitrary large positive number).

Step 3. Compute successive approximation

the Newton–Raphson iterative formula:

Compute the magnitude of the correction term

iteration:

A;+l = [K;+l – Kil.

(A2)

of root using

(A3)

in the cument

(A4)

Step 4. Test for convergence or failure to converge:

1.

2.

3.

If Ai+l s c and ID($I, Ki+l)l < e, go to Step !5. If

not continue.

If Ai+l > A~, select new K1 and return to Step 2. If

Ai+l s Ai continue.

Ifi<iV, seti=i+landretumto Step3. Ifi>, lV,

select new K; and return to Step 2.

Step 5. Output root Ko; set K. = Ki+l. Write Ko.

APPENDIX B

The coefficient matrix [H] is givern by (B 1), which is at the

bottom of this page, where

and

n=o, 1,2, . . ..Ncl

rn=o, 1,2, . . .. No.

- (cc): (cc): (cc): ..+ (Cc)]. (Sc)q (sC): . . . (sc)& -
(cc); (cc); (cc); ~.~ (Cc)iro (s0; (s0; “ “ “ (who

[H] = (CC)T (CC)P (CC)T “ “ “ (CC)R (SC)T (SC)P “ “ “ (SC)NO“ NO

(cS); (cS); (cS); ..0 (Cs)jj (w; (ss); . . . (ss)~o

_(Cs)p (Cs)p’ (Cs)y ~. “ (cS)* (sip (SWO “““ (SJ$ -

(Bl)
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