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Numerical Analysis and Computer
Simulation of Magnetostatic Wave
Propagation in a YIG-Loaded Waveguide

Matthew M. Radmanesh, Member, IEEE, Chiao-Min Chu, and George 1. Haddad

Abstract—Magnetostatic Wave (MSW) propagation in a finite-
width ferrite slab placed inside and along a rectangular wave-
guide is investigated theoretically and numerically. Using the
integral equation method, the general solution to the problem
of wave propagation has been derived for the first time here in
this paper. Thin-slab approximation made the derived solution
more tractable and provided the dispersion relations in terms
of an infinite determinant. From the presented results, it can be
concluded that in order to obtain high value of group time delay
over a large bandwidth thin, narrow slabs placed in the center
of the guide must be used. On the other hand, to maximize the
device bandwidth, thin slabs placed at the top or bottom of the
guide are most appropriate.

I. INTRODUCTION

NALYSIS of magnetostatic wave (MSW) propagation

in 4 ferrite material in a normally magnetized structure
bound by metal surfaces has been extensively reported in lit-
erature [1]-[5]. MSW propagation in a ferrite slab completely
filling a waveguide has also been analyzed and documented
[6]. Recently the analysis of magnetostatic waves in a YIG-
loaded waveguide was reported [7], [8]. The mathemati-
cal analysis carried out by these recent investigations were
based on a parallel magnetic bias field which led to the
propagation of magnetostatic surface waves (MSSW). These
waves are highly nonreciprocal with respect to the direction
of propagation and unsymmetrical with respect to the slab
position in the waveguide. Koshiba er al. [9], [10] provided
a unified numerical approach based on the finite-element
method where both cases of parallel and normal magnetization
were studied. However the problem of magnetostatic wave
propagation in a YIG slab enclosed in a waveguide with
normal magnetic bias field (Magnetostatic Forward Volume
Waves, MSFVW) has not been approached using the integral
equation method (see Fig. 1). A brief account of this method
was presented in the 1988 IEEE-MTT’s Digest [11]. In this
Digest article, the problem of MSW propagation in a normally
magnetized YIG-loaded waveguide was sketchily outlined and
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Fig. 1. Device configuration for Hy. normal to the YIG slab,

yet no attempt to solve the problem or provide supporting
formulation or reasonings was undeitaken and thus a very
scanty and ambiguous view of the resolution of the problem
was presented. The present work, however, attempts to clear
the way and present a highly coherent and understandable view
of the MSW propagation and all of its inherent complexities.

In this paper, the analysis of magnetostatic waves in a
waveguide structure with the normal magnetic field as shown
in Fig. 1 is carried out in detail. For this configuration, when
the gap length (z¢) is zero, the problem can be treated as a
boundary value problem and conventional mode analysis tech-
nique can be employed effectively to solve for the dispersion
characteristics for the different modes of propagation [12].

However, when z¢ is nonzero, the mode analysis techniques
appear to be fruitless and the integral equation method seems
to be one of the most effective method in this case and provides
the desired dispersion relations.

Section II briefly describes the underlying Magnetostatic
EM Fields. The integral equation method and the general
solution for the scalar magnetic potential furiction in terms of
an integrodifferential equation is presented in Section IIL. In
Section IV, using thin slab approximation an approximate so-
lution is obtained. Numerical analysis and results of computer
simulation for the first-order mode are presented in Section V.
Summary and conclusions along with some final discussions
follow in Section VL

II. MAGNETOSTATIC EM FIELDS

In this Section, the mathematical foundation for magne-
tostatic wave propagation in unbounded and bouhded ferrite
media is introduced and the governing equations are derived.
Magnetostatic waves have wavelengths much greater than the
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lattice spacing, therefore it is appropriate to use classical theory
rather than quantum theory, thus the small signal theory of a
lossless ferrite is based on the Maxwell’s equations.

The tensor permeability of a ferrite is derived using New-
ton’s equation of motion where the exchange and core losses
are neglected. Utilizing this permeability tensor, the wave
propagation in unbounded ferrites leads to three regions of in-
terest in the frequency-wave number (w-k) plane. It is seen that
magnetostatic wave propagation is possible only in a limited
range of wavelengths [13]. In this range of wavelengths, the
electric field is negligibly small compared with the magnetic
field and can be neglected. Thus Maxwell’s equations can be
simplified and the magnetic field can be derived directly from
a scalar potential function. When this approximation is used
the govering partial differential equations inside as well as
outside the YIG slab can be derived as follows:

Vxh=0—=h=V¥(z,y,2)
V.5=0 )
V- [E-V¥(z,y,z2)] =0. @

Where 7 is the permeability tensor, / is the small signal
magnetic field intensity and ¥(z,y, ) is the scalar magnetic
potential function. It should be noted that in the air region
outside the YIG slab, (2) is valid except for 7 which should
be replaced by scalar g, the permeability of free space.

Utilizing these equations, Wave Propagation in a YIG
loaded rectangular waveguide under the magnetostatic ap-
proximation can now be approached and a set of boundary
conditions which must be satisfied at the metal surfaces can
be derived. It is further assumed that the transverse dimensions
of the waveguide are small compared to the electromagnetic
wavelengths and thus the waveguide’s electromagnetic modes
are either cut-off or leaky waves.

III. THE INTEGRAL EQUATION METHOD

The analysis of the magnetostatic wave propagation in a
finite-width YIG slab appears to be feasible by the utilization
of the integral equation method. To be able to use this method
effectively, it is best to deduce the integral equation in the
steps as outlined in the following. The time dependence is of
the form e’“?, (w being the angular frequency) and is omitted
in all of the following expressions. The integral equation is
developed in the following systematic way:

1. the magnetostatic wave propagation is assumed to be in
the y-direction and thus of the form e~/£Y where K is
the wave number. In this manner, the y-variation of all
functions involved in this study is of the form e~7%¥;
which can be omitted since it is a common factor in all
of the subsequent formulations.

2. An unknown scalar magnetic potential function inside
the ferrite slab is assumed. The potential function for all
the points inside the slab is denoted by ¥(z, y, z). Based
on ¥(z,y,z), fictitious magnetic sources can be ob-
tained. The scalar magnetic potential function ¥(z, y, z)
inside the YIG region can be written as:

U(z,y,2) = &(z,2)e 1KY, 3)

Then, except for the common factor e /X% the small
signal magnetic field intensity, the magnetic flux density,
and the magnetization intensity vectors in the YIG region
designated by h,b and 7 respectively are given by

f=Vo— iKdj @)
b= polfi,] - )
m = ([&]— 1) -7 ©)

where § is a unit vector in the y-direction; [7] is the
identity tensor and [%,.] is the relative permeability tensor
[12].

. From the small signal magnetization intensity (77) given

by (6), the magnetic sources can be determined. The
total magnetic charge density consists of two portions:
a) the magnetic volume charge density (p,) and b) the
magnetic surface charge density (p,). These magnetic
sources can be expressed as

po ==V - (e 1Y) )

po =T -1 ®)

where 7 is a unit vector normal to the slab surface.
Substituting (6) in (7) and (8) and upon further sim-
plifications, p, and p; are finally given by

-1
polz, 2) = “Tcpn(g;,z) ©)

ps(To,2) = —(p — 1)@, (z0, 2) — K1 KP(z0, 2)
(10a)
ps(a — o, 2) = (1~ 1)®y(a — 9, 2)
+ K1 K®(a — %o, 2) (10b)

where p and K; are the diagonal and off-diagonal
elements of the permeablity tensor, respectively [12], and
., is the second-order derivative of ® with respect to
z and ®,, is the first-order derivative with respect to x.
From (10), it can be seen that unlike parallel magne-
tization case [8], the surface charges at z = 2z; or 2z
are absent and the only existing surface charges are at
z = zg and x = a—x¢. It will be seen that this difference
in the charge arrangement and mathematical form for the
two cases will lead to different formulations entirely.

. The Green’s function G(=, z)e ™", for a magnetic line

source located at (2, 2’) along and inside a waveguide,
is given by

G(z,2',2,7) = ZA" cos(nmwz’ [a) cos(nmz/a)
n=0

- Cosh,, (b — 2') Cosh,,z(11a)
for z < 2. and by:
G(z,x',2,7) = ZAn cos(nwz’ [a) cos(nrz/a)

n=0

- Cosh,, (b — 2) Cosh 2’ (11b)
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for z > 2’; where

-2
¥ha(1+ bon) sinh /b
Y = [K? + (n/a)’]'/?

n =

and §,, is the Kronecker delta function.

5. At this point in the development of the formulation, an
important distinction for the magnetic potential inside the
waveguide and inside the ferrite slab is made as follows:

a. ®f(z,2) is the scalar magnetic potential function
inside the waveguide (including the ferrite slab)
and is defined for 0 < 2z <aand 0 < z < b.

b. ®(z,z) is a scalar magnetic potential function
inside the ferrite slab and is defined for 2, < z <
a— T, and 21 < z < 29.

With this convention, the developed formulations which
will appear later in this work can easily be assimilated.

6. Considering a uniform waveguide cross section and
wave propagation in one unit length, and by means of the
magnetic sources (9), (10) and the suitable Green’s func-
tion (11), an integral expression for the potential function
<I>T(:1:7 z) everywhere inside the waveguide (including the
ferrite) can be written as:

®t(z, ) = //

YIG area

+/ ps(2'2VG(z,7', 2,2 )d7 (12)
YIG sides

ooz, 2 VG2, 2, 2, 2" )dx' d2

Using (9), (10), and (11) and considering only the points
located inside the ferrite slab, from (12) an integro-
differential equation in terms of ®(x, z) is obtained:

b(z,2)

a—xg Z
= /[(H’—_——]l)(I)zz(x',z')JG(:c,x’,z,z’)dz’da:’
@
0 z

i

_ /:2 [(/,L - 1)®,(zg,2') + KlK‘I’(xoazl)]

1
- G(z,m0,2,2")d7’

+ /z2 [(M —1)®.(a - x0,2') + K1 K®(a — fvovzl)]

Z1
-G(z,a — 39,2,7')d7’. (13)
Equation (13) represents the most general formulation
to the problem of MSW propagation in a normally
magnetized waveguide structure.

The integral expression given by (13) is two dimensional
and very difficult to analyze. Assuming the slab to be very
thin makes this equation one dimensional and tractable. With
this assumption and utilizing an effective numerical technique
combined with an exact simulation algorithm (see Appendix
A), the final resolution of the problem can successfully be
obtained.

IV. APPROXIMATE SOLUTION

As noted in (13), the first term involves a second-order
partial derivative term (®.,) which must be evaluated prop-
erly. To be able to obtain ®,,, the thin slab is subdivided
into two layers of equal thickness, ie., 23 < z < 2z and
zp < z < zy (Fig. 1). The variation of ®(z, z) in each layer
in the z-direction is assumed to be linear. In this manner three
functions, each having one variable, are used to approximate
®(z, z) in the slab as follows:

fi(z) = @(z, 1),
Jo(z) = ®(z, 20),
fQ(CL') = @(w,zg).

The linear approximation gives:

D, (x,2) = w 2 <z<z, (l4a)
D, (z,2) = W 20 <2<z, (14b)

and
&z, 2) = f2(2) = 2fo(@) + fi(2) (15)

dZ

where d = 20— 21 = 22 — 20 = t/2 and t is the slab thickness.

In the integral equation (13), the second and third terms
are surface integrals over the sides of the slab at x = z( and
a — zo. In the thin-slab assumption, instead of a continuous
distribution of surface charge in z, the charge distribution
on both sides of the slab (zg and a — xp) in each region
721 <z < zpand zg < z < 29 is assumed to be uniform.
This uniform charge distribution assumption connotes that the
surface charge in each region is equal to the mean of its values
at the edges of that region.

The main reason for uniform charge distribution at the
slab sides (z = z¢ and a — () is the fact that ®(z, z) is
evaluated only at three values of z, i.e., z = 21, 29, and z5.
The function ®(z, z) between these values is unknown and so
all the equations should involve calculations of ®(x, z) strictly
at these three values of z. The continuous charge distribution
would not be a plausible assumption under these conditions.

Substituting for G(z,z’, 2, 2’) in (13), carrying out the z-
integrals and evaluating the potential function ®(z, z) at z =
21, 2o, and zz would yield a set of three coupled equations in
terms of f1(x), fo(z) and f3(z). By introducing the following
functions

Gy(z) = fa(z) = 2fo(z) + fi1(x)
Gs(z) = fa(z) + 2fo(z) + fi(=).

This set of three coupled equations can be reduced to a set of
two coupled equations which is more attractive to work with

16)
a7

Go(z) = —;%cosnwx/a (18a)
Eal)Y LT L
Gs(z)=— Z m—% cosnwz/a (18b)

n=0
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where
Ut =V, [(B{‘+B§‘) cosh v, (b—23) + (BY+B2) cosh v, 21
+ 2B} cosh 7/, (b — 20) + 2B} cosh 'y;zo], (19)
W" =V, [(B{‘—FB;‘) cosh v, (b—z2) + (By+B%) cosh~,,21

— 2B} cosh,, (b — z0) — 2B} cosh ’Ylnzo], 20

. a—xou_l
< —/m pud?

(]
nw (,u— 1
— cos —zp
a 4

+ cos ﬂ(a — zp)
a
w—1
4
Vo = 1/(7, sinh ),

Z0 Z2
{L:/ cosh) 2'd?, B;‘:/ cosh,,2'd?,

zZ1 20

Gy(z) cos %xdx

KK dGs(xO))

dx

Gs(.’l?()) =+

K K dGs(a — :co)) o

s(d—$0)+ 4 dx

20
By = / cosh ., (b — 2")d2’,
z1
>4
B} = / coshv,, (b —2")d2’'.
20

The term Q" in (21) involves the first-order derivative of
G5(z). The function Gs(z) is defined to be nonzero in the YIG
and zero everywhere outside, which means it is discontinuous
at £ = z¢ and x = a — zo and thus its derivatives in the z-
direction at the slab edges are undefined. This problem creates
difficulty in the evaluation of Q™. To overcome this problem of
discontinuity, the function G(x) is defined only in the range
29 < z < a~—xg. In this manner, the function G4(x) becomes
differentiable at = 29 and @ — zo and its approximate finite
series expansion can be written as follows:

No
Gs(z) =Py + ZPL cos
L=1

Ny I,
+ E sin
dr P
L=1

29 £z < a— xg,

" —(z — )
0

(x — o)

vs
2%
(22)

where py’s and g1’s are arbitrary constants and Ny is a very
large integer number. Upon differentiation of G4(x) and use
of the series expansion for G.(z) and dGs/dz, the expression
for Q™ becomes:

_ 1 a—xqg
=& 5 / G,(x) cos O vdx
ud? J, a

Qn

0

nr  |p—1 Yo
—coijo[ 1 (po+LZ:_lpL>

No
KK, 5 L ]
qar
4 e 2x0
nw p—1 o
- L
+ cos 7(61 — z) {—4 (Po + ;("1) PL)

No
KKl L Lx
-1 .
+ 4 12_;1( ) a—~2.’170qL

Utilizing (23) and further mathematical manipulation, (18)
yields the following set of linearly independent equations:

(23)

[ee)

(24a)
0
o+ i @ U™ = 0, (24b)
"0
Sg + i Brn QU™ = 0, (24c¢)
where -
om = / _m cos (") G (),
om o= /mo_ " cos (—T%Ea:)Gv(x)dx
5™ = /z :—wo sin (?m) Go(z)ds
Gt = ﬁ _ cos (") cos (") da,

Bmn = a(széon—) /:—wo sin (%ﬂ-x) cos (%w) dz,

0
m=0,1,2---,Ng and n=0,1,2,---, Ng.

The term Q™ in (23) is expressed in terms of constant
coefficients py, and qr(L = 1,---,N,); however, through a
certain procedure it is possible to express them in terms of two
of the variables of (24) which are C7* and SI* as follows:

I Po ] rCY

p1 Ch

pn, | =[H] Céjo (25)
q1 S;

Lgn, | L SNo ]

where [H|™! is the inverse of a known matrix [H], (see
Appendix B).

Substitution of Pr’s and ¢z’s as given by (25) for @™ in
(24) will produce a system of linear equations in C}*, CT",
and S7*. To obtain a nontrivial solution for this solution for
this system of linear equations, it is required that the large
determinant (N, x N,) of the coefficient matrix to be set
to zero. However, for practical purposes the matrix should
be properly truncated for best accuracy. The truncation cut-
off point of the matrix depends on the mode of propagation.
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For example, for the first- and second-order modes minimum
matrix sizes were found to be 4 x 4 and 6 x 6 respectively.
For higher order modes, larger matrices must be considered.

In the next section (24) is discussed in detail for the first-
order mode (m 1) and a simulation algorithm and a
computer program based on a truncated matrix is developed
to provide numerical insight into the problem.

V. NUMERICAL ANALYSIS AND
COMPUTER SIMULATION RESULTS

In Section IV, the basic formulation for magnetostatic wave
propagation for a normal magnetic bias field was derived and
was given by (24). In this section a special case i.e., that of
the first-order mode is further analyzed and sample numerical
solutions are obtained.

For the first-order mode (m = 0,1 and n = 0,1) (24)
is used to derive the dispersion relations. Through further
mathematical work for this mode, (24) when cast into a concise
matrix notation, becomes
cy
Cy
Ccy
Cy
S

[M(f,K)] - 0, (26)

where [M(f,k)] is shown at the bottom of this page, and
where

_p-1
=t
Dy =
p=1) K?Kw v
(—( , (h31+h’21)—m 31 ) €08 —g

(20— ) - T ) oos a = 20),
D, =

(—(“; D (g + ) - %2_% 3?) cos L
(L0, 1) - st ) cos a—w0)
Dy =

93

- b

20= VARIABLE Y=
z t}H

a=20cm ° R
0 a

b=10cm

t=0fcem
Hde = 1800 Oe
Mo =1750

Oe

FREQUENCY, GHz

50 |
0

@ -
[e]
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K, om™!
Fig. 2. Daspersion curves for different slab positions.

/ / /
1 11 12 h13

-1 _ ’ ’ !
[H] - 21 22 23

/ / /
31 23 33

It is to be noted that [H] is a known matrix (see Appendix
B) which was calculated and wherefrom its corresponding
inverted matrix was worked out with the aid of a computer,
so that the results of this inversion could be used in (26).
Requiring a nontrivial unique solution yields the dispersion
relation. This dispersion relation is obtained by setting the
determinant of [M(f,K)] to zero. To find the dispersion
relation for the first-order mode, the following equation must
be solved:

|M(f,K)| =0. 27)
With the aid of a proper simulation algorithm, and by employ-
ing the Newton—Raphson method the determinant roots of the
dispersion relations were found through several iterations (see
Appendix A)

Fig. 2 shows the effect of slab position in the waveguide on
the dispersion characteristics. From this figure it can be seen
that the effect of slab position on the dispersion curve becomes
pronounced at the higher frequencies in the propagation band.
Although the characteristics all converge at the lower end of
the propagation band, their slopes are different. This leads to
different group time delays as can be seen in Fig. 3. This figure
shows the group time delay corresponding to Fig. 2. It can be

1 K2K observed that as the slab is placed toward the center of the
_(/‘l’_ )(h/ +hl)_ 17 1Y COSEI . . . . .
13 23) — =533 0 guide, the group time delay increases while the propagation
4 4(a — 2z0) a .
9 bandwidth decreases.

+ ((N - 1)( Ly — ) — _KKym ! 3) cos = (a — @), Width effects on the device performance was also studied
4 4(a — 2x0) a and the results are shown in Figs. 4 and 5. In Fig. 4, it can be

1+ FaOOWO FO(()lWl DoOszl D1a01W1 D20z01W1

FO[mWO 1 +Fa11W1 D()Oanl D1a11W1 D2OZ]_]_W1

[M(f, K)] = FaooUO FO&OlUl 1+ DoOé()lUl Dloé()]_[]1 DQOAOlUl

FOél()UO FozllUl D()OzllUl 1 +D10[11U1 DganUl

FB1U° Fpn Ut Do U? D1p1uU 1+ DepnU*
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Fig. 3. Time delay versus frequency for different slab positions.

seen that as the normalized air gap increases the propagation
bandwidth decreases and the curves flatten out as they shift
toward higher frequencies. Fig. 5 shows the corresponding
group time delay versus frequency. From this figure it can be
seen that as the slab width decreases (or the air gap increases)
the group time delay increases toward higher values with
smaller bandwidths as noted earlier. The group time delay at
smaller slab widths remains constant in a larger bandwidth and
also has a higher value. This property can be used effectively
in device design to obtain a constant, high group delay per unit
length in a desired frequency band. Fig. 6 plots wave number
K versus the normalized air gap (2z9/a). In this figure, the
information of Fig. 4 is rearranged in a different fashion. It
can be seen that the wave propagation at small slab widths
(or large air gaps) is possible only at higher frequencies with
smaller wavelengths (or higher K'). Once the slab width is
chosen, Fig. 6 shows the frequency at which the device must
be operated to obtain a certain wavelength, and vice versa.

As can be observed from these results, the effect of finite
sample width is significant in the low-wave number region
which is in good agreement with earlier works [9], [10], and
[14].

VI. SUMMARY AND CONCLUSION

Magnetostatic wave propagation in a normally magnetized
waveguide structure was analyzed and the general solution
to the problem with the use of the integral equation method
was derived. Thin-slab approximation led to a set of linearly
independent equations which provided the dispersion relations
in terms of an infinite determinant. Using proper truncation
procedures several important effects were studied. The depen-
dence of the dispersion relations and group time delay per
unit length on the position and width of the YIG slab and
sample numerical solutions for the first-order mode for several
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Fig. 4. Dispersion curves for different slab widths.
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Fig. 5. Time delay versus frequency for different slab widths.

configurations over a frequency range of 5.0-7.0 GHz were
discussed and the results were presented.

It was also observed that the propagating waves, unlike
parallel magnetization case, are reciprocal with respect to the
direction of propagation and symmetrical with respect to the
slab position in the waveguide.
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Fig. 6. Wave number (k) versus normalized air gap for different frequencies.

From these observations, it can be concluded that to obtain
high values of group time delay over a large bandwidth, very
thin slabs are required. To increase the time delay even more,
it is best to choose a narrow width slab and place it in the
center of the waveguide.

APPENDIX A
ALGORITHM FOR DISPERSION CHARACTERISTICS

The equation to be solved numerically is the dispersion
relation, a function of frequency (f) and wave number (k),
which can be written as

95

Step 2. Initialization: Set iteration counter ¢ = 1. Set the
correction term
Ay =C4 (A2)
(C1 is an arbitrary large positive number).

Step 3. Compute successive approximation of root using
the Newton—Raphson iterative formula:

D(f1, Ki)

Kit1=K; ~
A D'(f1, K,)-

(A3)

Compute the magnitude of the correction term in the current
iteration:
Air = |Kiv1 — K- (A4)

Step 4. Test for convergence or failure to converge:

1. If Ajrr € e and |D(f1,Kiy1)] < ¢, go to Step 5. If
not continue.

2. If As41 > Ay select new K; and return to Step 2. If
Ai+1 < A; continue.

3, If i < N, set7 =1+ 1 and return to Step 3. If ¢ > N,
select new K; and return to Step 2.

Step 5. Output root K,; set K, = K;;1. Write K.

APPENDIX B

The coefficient matrix [H] is given by (B1), which is at the
bottom of this page, where

D(f,K)=0 (A1)
a—xp
where D(f, K) represents the determinant of the coefficient coyr = / cos — % (x — z0) cos Tixd%
matrix involved in the system of linear equations (|M(f, K)|). o a = 2o a
Equation (A1), in general, is a nonlinear function of f and K m_ [0 nw B . mT
and can be quite complicated if the size of the matrix is large. (OS)y = - cos - 970 (xz — zo)sin . zdz,
With the aid of the Newton-Raphson method, (A1) is solved a—zo i mr
numerically for roots K (at a known frequency f1). The fol- (seyr = / sin P (z — ) cos —a—:cdx,
lowing algorithm details the exact steps used in programming ””2 e 0
(A1) in order to find its roots: (SS)™ = / 0 sin T (z — 20) sin m e,
Step 1. Input and Definition: Read f; = the frequency of " o a — 2z a
operation, K = the initial approximation of the root of:
and
D(fl, K) - 0
=0,1,2,---, N,
¢ = the convergence term and N = the maximum number nELL 210
of iterations. m=0,1,2,---, No.
[ (CO)R o) (COp COY, (SO) (SO SO, |
(coyy  (COp (€O COY, (SO (503 (SO)L,
[H] = | (CO)° (€O (CC)R” COR (SOR° (SC)3° (SO, (B1)
(CSE (€9  (CS) CS)y, (S  (SS); (SS)n,
L(CS)* (€9 (©8)3° €SN (9 (59)7° (SS)x;
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